Abstract
The stochastic Mamdani and Takagi–Sugeno fuzzy systems are firstly unified in a random environment, and the resulting stochastic hybrid fuzzy system is established according to some stochastic parameters. Secondly, A canonical representation of the stochastic process with orthogonal increments is presented by the properties of the Lebesgue–Stieltjes measure and stochastic integral, the approximation of the stochastic hybrid fuzzy system in the mean square sense is proved. Finally, an implementation process of this system is described through a simulation example, and the surface figure of the covariance function shows that the stochastic hybrid fuzzy system has excellent approximation capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.