Abstract

An increase in cortical excitability may be one of the factors mediating stress-induced vulnerability to neuropsychiatric disorders. Since stress increases extracellular glutamate and predisposes to migraine with aura attacks, we aimed to study the effect of stress on cortical spreading depression (CSD), the biological substrate of migraine aura and a measure of cortical excitability. CSD was induced by increasing concentrations of KCl applied over the dura with 5-minute intervals and recorded from parieto-occipital cortex to assess the CSD-induction threshold in acutely-stressed, chronically-stressed and naive mice. To study the mechanisms of acute stress-induced decrease in CSD threshold, we systemically administered clonidine, yohimbine, propranolol, CRH1 receptor antagonist NBI27914, mifepristone and spironolactone at doses shown to be effective on stress as well as a central noradrenergic neurotoxin (DSP-4) before acute stress. CSD threshold was significantly lowered by acute and chronic stress as well as central noradrenergic denervation. Clonidine and mifepristone further decreased the CSD threshold below the acute stress-induced levels, whereas yohimbine reversed the acute stress-induced decrease in CSD threshold compared to the saline-injected and stressed control groups. Propranolol, NBI27914 and spironolactone did not modify the effect of acute stress on CSD threshold. Stress increases cortical excitability as illustrated by a decrease in CSD-induction threshold. This action of acute stress is mediated by α2-adrenergic and glucocorticoid receptors. The decrease in CSD threshold may account for the stress-induced susceptibility to migraine. CSD may be used as a tool to study the link between stress-related disorders and cortical excitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call