Abstract
Adoption of double-wall straight-tube steam generators (SGs) made of Mod.9Cr-1Mo steel is planned for next-generation fast breeder reactors (FBRs) in Japan. One of the major concerns with the SG is the structural integrity of the tubesheet. During a transient event, a maximum thermal stress may be induced by the temperature distribution in the tubesheet, and the magnitude of the stress depends on the configuration of the tubesheet. Therefore, the stress generation mechanism of a tubesheet was studied through finite element (FE) analysis. Semispherical tubesheet models were investigated for the first survey of the thermal stress mechanism. The calculated results of the semispherical tubesheet model indicated an extensive peak stress around the outermost hole. The recognized thermal stress mechanism of a semispherical tubesheet is as follows: (1) The dominant thermal stress is hoop stress caused by the temperature difference between the perforated and surrounding regions. (2) The thermal stress is insensitive to the size of the specific portion, although it is dominated by an interaction mechanism between the perforated and surrounding regions. (3) The stress concentration around the edge of the holes generates a peak stress. (4) The amplitude of the peak stress depends on the tubesheet penetration angle, and the stress concentration becomes greatest near the outermost hole. Based on the above stress generation mechanism, we proposed a stress-mitigated tubesheet, a center-flattened spherical tubesheet (CFST), as an improved configuration. The calculated peak stress of the CFST was smaller than that of the semispherical tubesheet. Further investigation revealed the detailed stress generation mechanism of the CFST during a thermal transient. There were, in fact, two different comparable thermal peak stress mechanisms observed for the CFST. Both the location and magnitude of the maximum peak stress depended on the steam temperature histories during the thermal transient. The radial stress caused by structural discontinuity, which was located at the outermost hole, depended on the rate (dT/dt) of the steam temperature change. The hoop stress caused by the interaction between the perforated and surrounding regions, which occurred at the first inner layer hole (with respect to the outermost layer holes) depended on the range (ΔT) of the steam temperature change.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have