Abstract

External surface cracks can occur in cylindrical vessels due to damage and propagate in the manufacturing process and during service life. Most of research focuses on stress intensity factors for surface cracks with low aspect ratios, i.e., a/c ≤1.0. Situation may well arise where the aspect ratio of cracks is larger than one. An external longitudinal surface crack is assumed to be subjected to different types of hoop stress distributions acting perpendicular to the crack faces. The stress intensity factors (SIFs) along the crack front were determined through the three-dimensional finite element method. Then these results are used to compute approximate values of SIFs in the case of complex loadings by employing both the superposition principle and the power series expansions of the actual hoop stresses. It is found that the maximum stress intensity factor for external surface cracks with high aspect ratio occurs at different point to that with low aspect ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call