Abstract

Stress intensity values for cracks growing in conventional fatigue specimens are determined, with emphasis on the end constraint conditions associated with S-N fatigue testing. Three-dimensional finite element analysis methods are used to analyze thumbnail-shaped cracks in cylindrical geometries. Crack front straightening due to the increased bending introduced as crack growth progresses is included in the models. Because relatively stiff fatigue test machines prevent rotation at the clamped ends of test specimens, uniform axial displacement boundary conditions are imposed. Results for uniformly applied axial stress end conditions are also obtained for comparison. For crack-depth-to-specimen-diameter ratios over one-third, bending restraint induced in the specimens under applied axial displacement significantly reduces the resulting stress intensity relative to values computed for uniform end tension. The results are useful for evaluating crack growth in fatigue specimens within the limits of linear elastic fracture mechanics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.