Abstract
It is well known that the crack growth rate fatigue and stress corrosion cracking can be approximated by a power function of the stress intensity factor. In this study, stress intensity factor for elliptical crack under the uniform tension in linear elastic fracture mechanics (LEFM) is investigated therefore for this purpose, a pressure vessel modeled by finite element. A crack modeled on the pressure vessel and then the stress intensity factor for crack propagation in different methods is evaluated. Finite element analysis calculates stress intensity factor in the values of the J-integral are based on the stress intensity factors, JK, and by evaluating the contour integral directly, JA. The stability of crack growth is considered so the ductile crack extension is determined by pursuing the equilibrium between loading and crack resistance. Using especial method of meshing caused to have accurate results. This method causes to decrease run time and considerable accuracy. Then stress intensity factor is calculated for different position of the crack such as crack front and then compared to each other.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have