Abstract

It is well known that the crack growth rate fatigue and stress corrosion cracking can be approximated by a power function of the stress intensity factor. In this study, stress intensity factor for elliptical crack under the uniform tension in linear elastic fracture mechanics (LEFM) is investigated therefore for this purpose, a pressure vessel modeled by finite element. A crack modeled on the pressure vessel and then the stress intensity factor for crack propagation in different methods is evaluated. Finite element analysis calculates stress intensity factor in the values of the J-integral are based on the stress intensity factors, JK, and by evaluating the contour integral directly, JA. The stability of crack growth is considered so the ductile crack extension is determined by pursuing the equilibrium between loading and crack resistance. Using especial method of meshing caused to have accurate results. This method causes to decrease run time and considerable accuracy. Then stress intensity factor is calculated for different position of the crack such as crack front and then compared to each other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.