Abstract

Incompatible numerical manifold method (INMM) uses interpolation functions based on the concept of partition of unity, and considers the asymptotic solution and the discontinuity of displacement. This paper describes the application of INMM to bi-material interfacial crack. The two dimensional near-tip asymptotic displacement functions are added to the trial function approximation. This enables the domain to be modeled by manifold elements without explicitly meshing the crack surfaces. The crack-tip enrichment functions are chosen as those that span the asymptotic displacement fields for an interfacial crack. The INMM facilitates the incorporation of the oscillatory nature of the singularity within a conforming manifold element approximation. The complex stress intensity factors for bi-material interfacial cracks are numerically evaluated. Good agreement between the numerical results and the analytical solutions for benchmark interfacial crack problems is realized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.