Abstract

An increased reaction time often occurs after error responses (post-error slowing, PES). However, the role of top-down regulation in post-error processing remains to be debated. Impairing cognitive control function through acute stress would help to investigate the role and stage of top-down adaptive regulation in post-error processing. Here, we recruited 50 healthy male participants who were randomly assigned to either a stress condition (Trier Social Stress Task, TSST) or a control condition (control version of the TSST). A color-word Stroop task with different response stimulus intervals (RSIs) was used to investigate the effects of acute stress on different stages of post-error processing. The results showed that cortisol, heart rate, perceived stress level, and negative affect were higher in the stress group (n = 24) than in the control group (n = 26), indicating successful stress induction. The accuracy of post-error response in the control group increased with the extension of RSI, and the reaction time decreased. However, the accuracy of 1,200 ms RSI was close to that of 700 ms RSI in the stress group but was significantly lower than that in the control group. The results suggested that acute stress caused the impairment of top-down adaptive regulation after error. Furthermore, our study manifested adaptive adjustment only in the late stages of post-error processing, indicating the phasic and adaptive features of post-error adjustment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call