Abstract

The stress (force) evolution during the formation of different Ni silicide phases was monitored by in situ curvature measurements, for the reaction of thin Ni films of various thicknesses with 100 nm polycrystalline-Si deposited on oxidized (1 0 0) Si substrates. The silicide phase formation was also monitored by in situ X-ray diffraction, allowing to match and interpret the stress evolution in terms of the formation of the different silicide phases. We found that stresses developed during the formation of the different silicides can be explained qualitatively in terms of the corresponding volume changes at the reacting interfaces. Furthermore, the matching between XRD and force curve reveals that the highest compressive stress is related to the formation of the Ni 31Si 12 phase, and that the stress formed is relaxed when the reaction is completed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.