Abstract
Angle of break (AOB) is the acute angle created by the coal seam bedding plane and caving line formed by roof strata movement after extraction of a longwall panel. It has a significant influence on stress redistribution both in the gob and abutment. Throughout numerical simulation investigations up to now, little attention has been paid to it or an AOB of 90° was used, which however, is not realistic. This paper presents a detailed numerical modelling incorporating the AOB against Zhenchengdi Coal Mine. The AOB was obtained through cross-measure boreholes. Hoek-Brown constitutive model was used to simulate the rock masses. Double-yield constitutive model, which was best fitted by Salamon’s model, was used to simulate the gob. The results show that a “/ \\ shape” shear failure zone develops around the gob. The shear failure in the floor along the panel edge is due to opposite shear of rock mass on two sides of the caving line, and the number of yielded zones within the gob floor close to the gob edge is smaller. According to the research, the entry was determined to be driven under the gob edge employing split-level longwall panel layout (SLPL). The other numerical simulation for SLPL shows that stress around the god-side entry is much smaller than pre-mining stress, and the area of intact rock mass at the elevating section is larger than conventional layout. Numerical modelling was then validated by field observation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mining Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.