Abstract
By using a broadband Lg attenuation model developed for the Tibetan Plateau, we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M7.0 earthquake that occurred on August 8, 2017, in Jiuzhaigou, China, and its aftershock sequence. Thus, the source parameters, including the scalar seismic moment, corner frequency and stress drop, of these events can be further estimated. The estimated stress drops vary from 47.1 kPa to 7149.6 kPa, with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa. The estimated stress drops show significant spatial variations. Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip. In contrast, the highest stress drop was 7.1 MPa for the mainshock, and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip. By using a statistical method, we found self-similarity among some of the aftershocks with a nearly constant stress drop. In contrast, the stress drop increased with the seismic moment for other aftershocks. The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process. As such, the stress drop represents a key parameter for improving our understanding of earthquake source physics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have