Abstract

This paper investigates whether in frictional granular packings, like in Hamiltonian amorphous elastic solids, the stress autocorrelation matrix presents long range anisotropic contributions just as elastic Green's functions. We find that in a standard model of frictional granular packing this is not the case. We prove quite generally that mechanical balance and material isotropy constrain the stress auto-correlation matrix to be fully determined by two spatially isotropic functions: the pressure and torque auto-correlations. The pressure and torque fluctuations being respectively normal and hyperuniform force the stress autocorrelation to decay as the elastic Green's function. Since we find the torque fluctuations to be hyper-uniform, the culprit is the pressure whose fluctuations decay slower than normally as a function of the system's size. Investigating the reason for these abnormal pressure fluctuations we discover that anomalous correlations build up already during the compression of the dilute system before jamming. Once jammed these correlations remain frozen. Whether this is true for frictional matter in general or is it the consequence of the model properties is a question that must await experimental scrutiny and possible alternative models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.