Abstract

AbstractDry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call