Abstract

The aim of this study was to evaluate the stress changes in the radii beneath the locking plates (LP) of dogs implanted with LP using finite element analysis (FEA). The study included radii harvested from eight dogs. After computed tomography (CT) scans of the forelimb, the articular surface of the radius was fixed using resin. Material tests were conducted to identify the yield and fracture points and for verification with FEA. The CT data of the radius were imported into FEA software. The radii were classified into three groups based on the placement of the LP (nonplate placement, intact group; 1 mm above the radial surface, LP + 1 mm group; 3 mm above the radial surface, LP + 3 mm group). Equivalent, maximum, and minimum principal stresses and minimum principal strain were measured after FEA at the radial diaphysis beneath the plate. In shell elements, the LP + 1 mm and LP + 3 mm groups showed a significantly lower maximum principal stress compared with the intact group. In solid elements, the LP + 1 mm and LP + 3 mm groups showed a significantly higher equivalent stress and a significantly lower maximum principal stress compared with the intact group. When an axial load is applied to the radius, LP placement reduces the tension stress on the cortical bone of the radius beneath the plate, possibly related to implant-induced osteoporosis and bone formation in the cortical bone beneath the plate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.