Abstract
AbstractWeak serpentine minerals affect the mechanical behavior of serpentinized peridotites at depth, and may play a significant role in deformation localization within subduction zones, at local or regional scale. Mixtures of olivine with 5, 10, 20 and 50 vol. % fraction of antigorite, proxies for serpentinized peridotites, were deformed in axial shortening geometry under high pressures (ca. 2–5 GPa) and moderate temperatures (ca. 350°C), with in situ stress and strain measurements using synchrotron X‐rays. We evaluate the average partitioning of stresses at the grains scale within each phase (mineral) of the aggregate and compare with pure olivine aggregates in the same conditions. The in situ stress balance is different between low antigorite contents up to 10 vol. %, and higher contents above 20 vol. %. Microstructure and stress levels suggest the deformation mechanisms under these experimental conditions are akin to (semi)brittle and frictional processes. Unlike when close to dehydration temperatures, hardening of the aggregate is observed at low serpentine fractions, due to an increase in local stress concentrations. Below and above the 10–20 vol. % threshold, the stress state in the aggregate corresponds to friction laws already measured for pure olivine aggregates and pure antigorite aggregates respectively. As expected, the behavior of the two‐phase aggregate does not evolve as calculated from simple iso‐stress or iso‐strain bounds, and calls for more advanced physical models of two‐phase mixtures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.