Abstract

Based on a typical project in an altered rock area, this study carried out numerical simulations using the FLAC3D software to calculate the changes in the stress field, deformation field, and plastic zone of the surrounding rock during the unsupported and supported excavation of a water transfer tunnel. The degree of alteration of the surrounding rock was considered as the base point. The following results were obtained: in the unsupported state, the tunnel surrounding rock was affected by different degrees of alteration, and compressive stress concentration appeared within a certain range at the bottom of the chamber. The value of all-directional stress decreased with the deepening of the degree of alteration, while the opposite was the case for the depth of influence. The displacement changes at the bottom and side walls of the chamber were large and increased significantly with the deepening of the degree of alteration; the displacement monitoring points distributed around the tunnel exhibited the same deformation trend. The plastic zone of the surrounding rock obviously expanded as the degree of alteration deepened. The stress, deformation field, and plastic zone of the tunnel surrounding rock were effectively controlled after the adoption of support measures. The results obtained by this study can be used as a reference for similar projects in altered rock areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call