Abstract

This is the first study, to the authors' knowledge, to simultaneously perform a direct comparison of finite element analysis, strain gage measurements, and infrared thermography for stress analysis under both static and dynamics tensile loads of the classic geometry of a composite plate with a center hole. The plate was made from a carbon fiber-reinforced epoxy composite with dimensions of 250 mm length × 25 mm width × 2.2 mm thickness and a 5 mm diameter center hole. Using static tensile loads of 1000 N, 2000 N, and 3000 N, the plate Von Mises stress field was evaluated using strain gages versus finite element analysis. Using cyclic tensile loads of 1000 N and 1600 N at 5 Hz, the plate Von Mises stress field was assessed using strain gages versus infrared thermography. The strain gages versus finite element analysis line-of-best-fit showed poor agreement (slope = 2.1, R = 0.81), although the slope could easily be applied as a correction factor when comparing the two methods. The strain gages versus infrared thermography showed much better agreement (slope = 0.95, R = 0.91). Finite element analysis displayed a “butterfly” stress field around the hole with peaks of 73.5 MPa (at 1000 N), 147 MPa (at 2000 N), and 220.5 MPa (at 3000 N). Infrared thermography showed a “ring” of high stress around the hole with peaks of 74.8 MPa (at 1000 N) and 102.9 MPa (at 1600 N). All three methods showed similar relative trends for the carbon fiber-reinforced epoxy plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.