Abstract

Notch deformation behaviour under monotonic and cyclic loading conditions was investigated using circumferentially notched round bar and double-notched flat plate geometries, each with two different notch concentration factors. Notch strains for the double-notched plate geometry were measured with the use of miniature strain gauges bonded to specimens made of a vanadium-based microalloyed steel. Elastic as well as elasto-plastic finite element analyses of the two geometries were performed. Notch root strains and stresses were predicted by employing the linear rule, Neuber's rule and Glinka's rule relationships under both monotonic and cyclic loading conditions. The predicted results are compared with those from elastic—plastic finite element analyses and strain gauge measurements. Effects of notch constraint and the material stress-strain curve on the notch root stress and strain predictions are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.