Abstract
Functionally Graded Materials (FGMs) are designed for use in high-temperature applications. Since the mass production of FGM has not yet been made, the determination of its thermo-mechanical limits depends on the compositional gradient exponent value. In this study, an efficient working model is created for the thermal stress problem of the 2D-FG plate using Multi-gene Genetic Programming (MGGP). In our MGGP model in this study, data sets obtained from the numerical analysis results of the thermal stress problem are used, and formulas that give equivalent stress levels as output data, with the input data being the compositional gradient exponent, are obtained. For the current problem, efficient models that reduce CPU processing time are obtained by using the MGGP method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.