Abstract

Any molecular dynamical calculation requires a precise knowledge of interaction potential as an input. In an appropriate form, such that the potential, with respect to the coordinates, can be evaluated easily and accurately at arbitrary geometries (in our study parameters for geometry are R and θ), a good potential energy expression can offer the exact intermolecular behavior of systems. There are many methods to create mathematical expressions for the potential energy. In this study for the first time, we utilized the Multi-gene Genetic Programming (MGGP) method to generate a potential energy model for the He–F2 system. The MGGP method is one of the most powerful methods used for non-linear regression problems. A dataset of size 714 created by the SAPT 2008 program is used to generate models of MGGP. The results obtained show the power of MGGP for producing an efficient nonlinear regression model, in terms of accuracy and complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.