Abstract
Finite element stress analyses were performed on the proximal humerus before and after the simulated implantation of stemmed, metallic prosthetic components with porous sintered surfaces for direct bony attachment. Design geometries with surfaces at the prosthetic head/bone interface that were (a) convex, (b) flat, and (c) concave were studied. Analyses for each of the three geometries were conducted to reflect (a) bone ingrowth on all the prosthesis/bone surfaces and (b) bone ingrowth only along the underside of the prosthetic humeral head (assuming the stem was not coated with a porous material). Three loading conditions were used to model various degrees of abduction of the arm. Results indicated that in the normal humerus the compressive joint forces are transmitted from the articular surface through cancellous bone to the inferior cortical shell. Contraction of the rotator cuff muscles created tensile stresses in the superolateral cancellous bone and the superior cortical shell of the humerus. Results of the implanted humeral component models indicated that the use of a prosthesis with bone ingrowth along the stem would cause marked stress shielding proximally whereas the use of implants with porous ingrowth only on the underside of the humeral head replacement produced stress fields more similar to the normal humerus. The convex, flat, and concave surfaces provided similar load transfer from the component to the underlying bone in all loading cases. Other prosthetic head designs that may offer better initial stability produced stress fields similar to those of existing prostheses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have