Abstract

Stress is a common, if often unpredictable life event. It can be defined from an evolutionary perspective as a force an organism perceives it must adapt to. Thus stress is a useful tool to study adaptation and the adaptive capacity of organisms. The deep genome, long neglected as a pile of "junk" has emerged as a source of regulatory DNA and RNA as well as a potential stockpile of adaptive capacity at the organismal and species levels. Recent work on the regulation of transposable elements (TEs), the principle constituents of the deep genome, by stress has shown that these elements are responsive to host stress and other environmental cues. Further, we have shown that some are likely directly regulated by the glucocorticoid receptor (GR), one of the two major vertebrate stress steroid receptors in a fashion that appears adaptive. On the basis of this and other emerging evidence I argue that the deep genome may represent an adaptive toolkit for organisms to respond to their environments at both individual and evolutionary scales. This argues that genomes may be adapted for what Waddington called "trait adaptability" rather than being purely passive objects of natural selection and single nucleotide level mutation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.