Abstract

Studies have shown that external stress induces biofilm formation, but the underlying details are not clearly understood. This study investigates the changes in cell surface properties leading to increase in biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa in the presence of streptomycin. Bacterial attachment in the presence and absence of streptomycin was quantified by fluorescence spectroscopy. In addition, cell surface charge and contact angle were measured and the free energy barrier for attachment was modeled using extended Derjaguin-Landau-Verwey-Overbeek (xDLVO) theory. Peptides from bacterial cell surface were shaved by protease treatment and identified with ultra-performance liquid chromatography (UPLC)-QTOF and a homology search program SPIDER. Biofilm formation increased significantly in the presence of streptomycin (10mg/L) in the culture. Bacterial cell surface charge reduced, and hydrophobicity increased leading to a net decrease in the free energy barrier for attachment. Extracellular matrix-binding protein was positively regulated in S. aureus under stress, indicating stronger interaction between bacterial cells and solid surface. In addition, several other proteins including biofilm regulatory proteins, multidrug efflux pumps, transporters, signaling proteins, and virulence factors were differentially expressed on bacterial cell surface, which is indicative of a strong stress response by bacteria to streptomycin treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call