Abstract

produces a variety of bioactive compounds that prevent fungal growth, including aflatoxins. Aflatoxigenic fungi ( and ) are being researched concerning spp. and can prevent the spread of aflatoxins-producing fungi. Aflatoxin-degrading enzymes, which can convert poisonous aflatoxins into less dangerous compounds, are also produced by spp. The processes through which these microorganisms can be used to reduce aflatoxins in food and agricultural systems are still the subject of active research. To evaluate the novelty of tetracycline against the biosynthesis of aflatoxin in aflatoxigenic fungi via computational approach. In this study, we performed molecular docking of polyketide synthase (Pks-A), an enzyme that initiates aflatoxin biosynthesis using tetracycline, using the online SeamDock server. Our results showed that tetracycline had a strong affinity for Pks-A in the binding pocket. The binding energy of tetracycline was -12.7 kcal/mol, indicating a strong binding affinity between the two molecules. Furthermore, the binding site was located in the active site, which is a conserved region in Pks-A and is essential for catalysing the formation of aflatoxin. The results of our docking study suggest that tetracycline may be an effective inhibitor of aflatoxin biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.