Abstract

The coastal region of Bangladesh is significantly influenced by soil and water salinity, which is further exacerbated by the increasing frequency of tropical cyclones and rising sea levels. Understanding the extent of salinity and its challenges is crucial for promoting sustainable agriculture and ensuring access to safe drinking water. Using quantitative (soil and water parameters) and qualitative (focus group discussion and key informant interview) data, we investigated (i) soil and water salinity and soil nutrient contents; and (ii) adaptive practices in agriculture and drinking water management in three sub-districts (Assasuni, Dacope and Morrelganj) in the southwestern coastal region of Bangladesh. Results show that soil salinity levels did not significantly differ among the sub-districts, with Assasuni having slightly higher soil salinity (8.24 dS m-1) compared to Dacope (8.08 dS m-1) and Morrelganj (7.96 dS m-1). Significant differences were observed in the salinity level of pond and canal water among the sub-districts, with Assasuni having the highest levels of salinity in both pond (13.98 dS m-1) and canal water (77.85 dS m-1), compared to other sub-districts. Soil and water salinity were the major challenges reported by the respondents; however, climate-induced stresses (e.g., untimely precipitation) and outbreaks of pests during droughts have been identified as prominent issues in sustainable agriculture. Rainwater harvesting has been identified as a viable adaptive technique in drinking water management, offering a feasible solution to address water and soil salinity. The study underscores the importance of implementing adaptive practices (e.g., rainwater harvesting) to address water scarcity and salinity issues in the coastal region and promote resilient agricultural systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.