Abstract

The results of full-scale strength tests of an aircraft spar made of carbon fiber with a corrugated wall are presented. Strength tests of the spar structure were carried out in three stages, including static and cyclic loading. During each stage of loading, acoustic emission (AE) and strain gauge control of the spar was carried out. Real-time location of AE signals characterized the most dangerous areas in the process of destruction of the root zone of the spar and was carried out using the "time window" algorithm moving along the implementation of the AE signal. To determine the time of arrival of the AE signal, two threshold levels were selected, one of which corresponded to the prehistory noise level, and the second level corresponded to the minimum signal energy level exceeding the noise level. Using tensometry, the maximum stresses were found in different zones of the spar, where the AE signals were located.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call