Abstract

This paper presents a methodology to predict the strength of adhesive joints under variable moisture conditions. The moisture uptake in adhesive joints was determined using a history dependent moisture prediction methodology where diffusion coefficients were based on experimental cyclic moisture uptake of bulk adhesive samples. The predicted moisture concentrations and moisture diffusion history were used in a structural analysis with a cohesive zone model to predict damage and failure of the joints. A moisture concentration and moisture history dependent bilinear cohesive zone law was used. The methodology was used to determine the damage and failure in aluminium alloy – epoxy adhesive single lap joints, conditioned at 50 °C and good predictions of failure load were observed. The damage in the adhesive joints decreased the load carrying capacity before reaching the failure load and a nonlinear relationship between the load and displacement was observed. Changes in crack initiation and crack propagation were also observed between different types of joints. The presented methodology is generic and may be applied to different types of adhesive joint and adhesive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.