Abstract

This paper is concerned with modelling damage and fracture in woven fabric CFRP single-lap bolted joints that fail by net-tension. The approach is based on the assumption that damage (matrix cracking, delamination and fibre tow fracture) initiates and propagates from the hole in a self-similar fashion. A traction–separation law (based on physically meaningful material parameters) is implemented within an Extended Finite Element Method (XFEM) framework and used to predict the joint strength. Reasonable agreement between model and experiment was obtained for test configurations covering different weave types and lay-ups, a range of joint geometries (two hole diameters and a range of normalised joint widths) and finger-tight and fully torqued clamp-up conditions. The greatest discrepancies were for situations where the tensile fracture mechanisms were more complex, and hence not captured fully in the model or when bearing failure occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call