Abstract

Inter-cluster bridging of carbon nanotubes (CNTs) and carbon black (CB) nanoparticles conjoins inactive branches of carbonaceous nanofillers within the matrix and reduces the electron tunneling distance. This mechanism moderately overcomes quantum tunneling and provides percolative polymer networks exhibiting favorable electrical responses. This study focuses on devising an analytical procedure to scrutinize the electrical conductivity and percolation threshold of CNT/CB/polymer nanocomposites. To involve the physics of electrical processes, the modeling approach considers cylindrical CNTs and spherical CB nanoparticles surrounded by a continuum interphase, which serves as an electron hopping duct. This model is extended in a bottom-up micromechanics generalization to a level where it is capable of predicting the effects of a wide range of microstructural properties. The comparison of predictions with those obtained via experimental examinations, while affirming the infrastructure for investigating the electrical behavior of binary systems, convincingly captures the electrical conductivity/percolation threshold of ternary nanocomposites containing CNT/CB nanofillers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.