Abstract

Soil–rock mixture (SRM) is a heterogeneous geomaterial which is widely used in geotechnical engineering projects. As a special engineering geological body, SRM is composed of many complex components and is a heterogeneous multiphase material with various structural characters, and, thus, exhibits complex mechanical characteristics. The mechanical and physical properties of SRM are major factors which lead to different developmental patterns and deformation characteristics for talus slides. The formation mechanism and mechanical parameters of SRM also play important roles in research regarding slope stability. Taking the Mahe talus slide of the Lenggu hydropower station located on the Yalong River in southwestern China as a study example, many methods, such as the analogy method used in engineering, as well as laboratory model tests, large in situ shear tests, the back analysis method and numerical experiments, are applied in the comprehensive analysis of SRM from a macroscopic–microscopic perspective. The SRM samples collected from the Mahe talus slide consist of various soil and rock contents. The parameters gained from the frontal methods are applied in the stability of the Mahe talus slide. The main contents of the study are as follows: (1) according to the special structure of SRM, ten groups of SRM samples collected from different slide parts are used to perform particle size analysis experiments. The grading combination of the ten groups of samples is analyzed and the gradation curves are obtained from laboratory tests; (2) based on the intensive considerations of different particle compositions, the ten SRM group samples collected from the talus slide are used to perform direct shear tests; (3) due to the fact that the samples containing large-sized particles cannot be simulated by means of indoor direct shear tests, large in situ SRM shear tests are performed in the field; (4) SRM containing large-size particles is used to carry out numerical experiments using the similarity ratio, which is determined by contrasting the results of the laboratory tests and numerical experiments for the same size samples containing the same particle combinations. The numerical experiments are then adopted to obtain the shear strength parameters of different large size samples containing different particle combinations from the perspectives of rock content, particle size, and particle graduation; (5) according to the terrain, geomorphology and stability of the talus slide, the shear strength parameters in the case of natural conditions and magnitude 6 earthquakes on the Richter Scale are obtained using the back analysis method from the perspective of the limit equilibrium of the talus slide; and (6) the shear strength parameters of the various methods listed above are contrast-analyzed. The general shear strength parameters of the SRM are attained properly by using the weighted superposition of the safety coefficients from the different calculation methods. The general strength parameters are used to calculate the stability factor of the Mahe talus slide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call