Abstract
Splitting failure modes of perpendicular to grain bolted connections have received little attention when compared to splitting modes in parallel to grain connections. Previous research by the authors tested a series of single bolt, double shear perpendicular to grain connections of machine stress rated (MSR) lumber, laminated veneer lumber (LVL), and parallel strand lumber (PSL). Many of the experimental tests resulted in failure by splitting. Two fracture mechanics based models for connections proposed elsewhere were applied. Input parameters for the models were generated by testing matched sections to the connection strength samples. Input properties for the Van der Put model included shear modulus and Mode I fracture energy. Inputs for the Jensen model included shear modulus, modulus of elasticity, Mode I fracture energy, and tension perpendicular to grain strength. Mode I fracture energy of PSL was markedly greater than the energy associated with MSR Lumber and LVL. The Van der Put model overpredicted the experimental connection strength by at least 77%. The Jensen model was found to most accurately predict the connection strength over the entire range of configurations tested. Comparing the Van der Put and Jensen models to the previous work using the national design specification, the Jensen model performed the best in terms of accuracy. The tension perpendicular to grain strength and the method of fracture energy calculation may be important parameters for the capacity of perpendicular to grain loaded wood members.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have