Abstract

There are two different types of cruciform members used in practice. Flanged cruciform sections are typically fabricated from two hot-rolled WT sections welded to the web of a standard hot-rolled I section, whereas plain cruciform sections are typically fabricated from two symmetric rectangular plates welded in the form of a cross. Cruciform members that are subjected to combined compression and bending are typically limited by torsional buckling unlike conventional compression members (such as W-shapes) that are typically limited by flexural (Euler) buckling about their local weak axis of bending. Detailed guidance on the analysis of flanged and plain cruciform members is scarce in literature. Hence, this paper presents numerical studies on the strength capacities of both flanged and plain cruciform members that are subjected to combined compression and bending effects. Analysis results show the ability of flanged and plain cruciform to resist lateral-torsional buckling over longer unbraced lengths, allowing development of efficient plastic resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.