Abstract
As one of the key measures for comprehensive management of goaf in various mines, filling mining has been recognized by practitioners in recent years due to its functions (e.g., resource utilization of solid waste and thorough goaf treatment). The performance of the filling material is the core challenge of filling mining, and it is influenced by the settling speed, conveying characteristics, and filling body strength. To understand the strength characteristics of a cemented filling body composed of medium-fine tailings, in this study, filling material ratio tests under different content of cement, tailings, and water were conducted. A backpropagation (BP) neural network topology structure was established in this study. The strength after different curing times was used as the output variable to analyze the impact of the cement, tailings, and water content on the filling body. A 3-Hn-3 structural model was employed. When the number of hidden layers Hn was 7, the model achieved the best learning and training effect. The results show that the predicted value, which is close to the measured value (fitting accuracy of 92.43–99.92%; average error of 0.0792–7.5682%), satisfies the engineering requirements. The neural network model can be employed to predict the filling body’s strength and provide a good reference to analyze the change law in the filling body’s strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.