Abstract
Generally, the development of ship plate steels is mainly concerned with the improvement of strength and toughness, such as F32 and F36. Due to the strength–ductility trade-off, it is difficult to combine excellent ductility with strength improvement, resulting in a poor deformation ability of the traditional ship plate steels during collision. In the present study, a series of high-ductility ship plate steels with property gradients were obtained by multi-phase microstructure control. The strength–ductility matching mechanism was analyzed. Meanwhile, the roles of M/A islands and lamellar pearlites in plastic deformation were also revealed. The results show that the microstructure of “quasi-polygonal ferrite + granular bainite + M/A islands + fewer lamellar pearlites” has the best strength–ductility match. The excellent ductility is mainly dependent on dispersive kernel average misorientation, recrystallized grains without distortion, and soft grains. In addition, the longer branch crack can effectively relieve the stress concentration at the tip of the main crack. Compared with lamellar pearlites, the dispersed M/A island grains have a higher strength contribution and more stable γ-fibers, which is beneficial to delay the appearance of internal micro-voids and micro-cracks. However, the lamellar pearlites can coordinate deformation only when the orientation of thinner lamellae exceeds two.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.