Abstract
The presence of streamwise vorticity in the vicinity of the wing tip contributes to lift in thin flat plate zero pitch angle flapping wings in quiescent air. In creating flapping wing micro air vehicles it is desirable to maintain only the mechanical and kinematic complexity absolutely necessary to artificially duplicate flapping wing flight. This study quantifies the lift generated from a flapping motion of absolute minimum complexity thought to be capable of generating lift Using a flapping wing micro air vehicle with wings fabricated in-house, streamwise vortices were identified along the span of wings of various aspect ratios and at numerous different points throughout the flapping cycle under a variety of operating conditions. The lift generated by the flapping mechanism was quantified experimentally using a force transducer and a high speed camera. Digital particle image velocimetry was used to determine the contributions of streamwise vorticity to the total measured lift. Further evidence was found of the importance of the relationship between wing span and flapping frequency in the nature of the formation and shedding of vortices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.