Abstract
In order to understand how geometric errors propagate and how deviations accumulate in a six-axis motion platform (SMP), a new geometric error model based on the stream of variation (SOV) theory is presented in this paper. SOV theory is widely used in industrial engineering with several steps or phases. The conventional geometric error model only calculates the initial and final orientation, yet the deviations after each step in the whole process are still unknown, which are critical parameters in measuring the product quality. In this new error modeling method, each step in the alignment and welding process in SMP can be considered as a station. Thus, the deviations can also be derived after each station, which is beneficial for error identification. Based on the new error modeling approach involving SOV theory, the validation of an optimized configuration is developed by a series of calculations results. By observing the deviations after each station, the optimized configuration can improve accuracy and reduce power loss compared to a traditional configuration. The new error modeling approach based on SOV theory is systematic and comprehensive, and can be applied in other similar environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.