Abstract

This paper introduces a new geometric error modeling approach for multi axes system (MAS) based on stream of variation (SOV) theory, especially for multi-axis precision stage. SOV is used for measuring product quality for some complicated multi operations system, which is widely used in error propagation in engineering field. This paper introduces SOV concept into geometric error modeling for MAS. Instead of different process in manufacture, the new error modeling approach regards each axis as a station in MAS, and calculates the deviations after each station which is considered as upstream factor to next station. It is clear to observe how geometric errors give influence and how deviations accumulate. Different with conventional methods which are only used for error compensation in machine tools, the new error model is beneficial for sensitive error control and optimal configuration selection in design part. In addition, the new error modeling has some merits such as debugging easily due to observe the deviations after every station. A case study of new error modeling procedure for six-axis stage (SAS) in optoelectronic packaging system (OPS) is developed, and applications related to error reduction order and optimal configuration selection are processed based on the new error model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.