Abstract

In this paper, we develop a theory for studying the electrokinetic effects in a charged nanocapillary filled with active liquid. The active particles present within the active liquid are self-driven, demonstrate vortex defects, and enforce a circumferentially arranged polarization field. Under such circumstances, there is the development of an induced pressure-gradient-driven transport dictated (similar to diffusioosmotic transport) by the presence of an axial gradient in the activity (or the concentration of the active particles). This pressure-driven transport has a profile different from the standard Hagen-Poiseuille flow in a nanocapillary. Also, this induced pressure-driven flow drives electrokinetic effects, which are characterized by the generation of a streaming electric field, associated electroosmotic (EOS) transport opposing pressure-driven flow, and electroviscous effect. We quantify these effects as functions of dimensionless parameters that vary inversely as the strength of the activity-induced pressure-driven flow and salt concentrations. Overall, we anticipate that this paper will draw immense attention toward a new type of activity-induced pressure-driven flow and associated electrokinetic phenomena in charged nanoconfinements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.