Abstract

Faster and more energy efficient hardware accelerators are critical for machine learning on very large datasets. The energy cost of performing vector-matrix multiplication and repeatedly moving neural network models in and out of memory motivates a search for alternative hardware and algorithms. We propose to use streaming batch principal component analysis (SBPCA) to compress batch data during training by using a rank-k approximation of the total batch update. This approach yields comparable training performance to minibatch gradient descent (MBGD) at the same batch size while reducing overall memory and compute requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.