Abstract

A highly energy efficient reconfigurable accelerator called CMA (Cool Mega-Array) is proposed. It consists of a large Processing Element (PE) array without memory elements for maintain result of ALU and configuration data, a small simple programmable micro controller for data management, and the data memory. Unlike traditional coarse grained reconfigurable processors, the power consumption for hardware context switching, storing intermediate data in registers, and clock distribution for them are eliminated from PE array which occupies large area of a chip. Configuration registers are collected to small area of micro controller. The data flow graph mapped on the PE array is static during execution. Various application programs can be implemented by making the best use of flexible data management instructions with the micro controller. When the delay time in the PE array is longer than the data handling time with the micro controller, the supply voltage for the PE array is scaled to reduce the power consumption without degrading the performance. In the opposite case, wave pipelining is applied to enhance PE array performance. A prototype chip CMA-1 with 8 × 8 PE array with 24-bit data width was fabricated in 2.1 × 4.2mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> 65-nm CMOS technology, and achieves 2.4-GOPS/11.2-mW sustained performance. This energy efficiency is comparable to that of the most energy efficient accelerators that have been reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call