Abstract

We coupled the global climate models (GCMs) from the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and Future Land Use Simulation model (FLUS) to evaluate land use change in the Bailong River Basin (BRB) under three shared socioeconomic pathway and representative concentration pathway scenarios (SSP1–2.6, SSP2–4.5, SSP5–8.5). Additionally, we used calibrated soil and water assessment tools (SWATs) to evaluate the streamflow in the BRB from 2008 to 2100 under the combined influence of climate and land use changes. The results indicate that (1) under the SSP126-EP scenario, forests have been well preserved, and there has been an increase in the combined area of forests and water bodies. The SSP245-ND scenario has a similar reduction pattern in agricultural land as SSP126-EP, with relatively good grassland preservation and a moderate expansion rate in built-up land. In contrast, the SSP585-EG scenario features a rapid expansion of built-up land, converting a significant amount of farmland and grassland into built-up land. (2) From 2021 to 2100, the annual average flow increases under all three scenarios, and the streamflow change is most significant under SSP5–8.5. (3) Compared to the baseline period, the monthly runoff increases, with the most significant increase occurring during the summer months (June to August). This study offers a thorough assessment of potential future changes in streamflow. Its findings are expected to be applied in the future to improve the management of water resources at a local level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call