Abstract

Abstract Understanding the behavior of the river regime in watersheds is fundamental for water resources planning and management. Empirical hydrological models are powerful tools for this purpose, with the selection of input variables as one of the main steps of the modeling. Therefore, the objectives of this study were to select the best input variables using the genetic, recursive feature elimination, and vsurf algorithms, and to evaluate the performance of the random forest, artificial neural networks, support vector regression, and M5 model tree models in forecasting daily streamflow in Sono (SRB), Manuel Alves da Natividade (MRB), and Palma (PRB) River basins. Based on several performance indexes, the best model in all basins was the M5 model tree, which showed the best performances in SRB and PRB using the variables selected by the recursive feature elimination algorithm. The good performance of the evaluated models allows them to be used to assist different demands faced by the water resources management in the studied river basins, especially the M5 model tree model using streamflow lags, average rainfall, and evapotranspiration as inputs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.