Abstract

The Suomi National Polar-orbiting Partnership visible infrared imaging radiometer suite instrument has successfully operated since its launch in October 2011. Stray-light contamination is much larger than prelaunch expectations, and it causes a major decrease in quality of the day-night band night imagery when the spacecraft is crossing the Northern or Southern day-night terminators. The stray light can be operationally estimated using Earth-view data that are measured over dark surfaces during the new moon each month. More than 7 years of nighttime images have demonstrated that the stray-light contamination mainly depends on the Earth–Sun–spacecraft geometry, so its intensity is generally estimated as a function of the satellite zenith angle. In practice, stray-light contamination is also detector- and scan-angle-dependent. Previous methods of stray-light prediction generally rely on using the known stray light level from the same month in the previous year, when the Earth–Sun–spacecraft geometries had been similar. We propose a new method to predict stray-light contamination. The Kullback–Leibler similarity metric is used as a method to combine data from multiple years with appropriate adjustments for degradation and geometry drifts in order to calculate a fused stray-light contamination correction. The new method provides an improved prediction of stray-light contamination compared to the existing methods and may be considered for future use in the real-time NASA Level-1B products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call