Abstract

Stray light caused by scattering on optical surfaces and in the Earth's atmosphere degrades the spatial resolution of observations. We study the contribution of stray light to the two channels of POLIS. We test the performance of different methods of stray-light correction and spatial deconvolution to improve the spatial resolution post-facto. We model the stray light as having two components: a spectrally dispersed component and a component of parasitic light caused by scattering inside the spectrograph. We use several measurements to estimate the two contributions: observations with a (partly) blocked FOV, a convolution of the FTS spectral atlas, imaging in the pupil plane, umbral profiles, and spurious polarization signal in telluric lines. The measurements allow us to estimate the spatial PSF of POLIS and the main spectrograph of the German VTT. We use the PSF for a deconvolution of both spectropolarimetric data and investigate the effect on the spectra. The parasitic contribution can be directly and accurately determined for POLIS, amounting to about 5%. We estimate a lower limit of about 10% across the full FOV for the dispersed stray light. In quiet Sun regions, the stray-light level from the close surroundings (d< 2") of a given spatial point is about 20%. The stray light reduces to below 2% at a distance of 20" from a lit area for both POLIS and the main spectrograph. A two-component model of the stray-light contributions seems to be sufficient for a basic correction of observed spectra. The instrumental PSF obtained can be used to model the off-limb stray light, to determine the stray-light contamination accurately for observation targets with large spatial intensity gradients such as sunspots, and also allows one to improve the spatial resolution of observations post-facto.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.