Abstract

In the Early Jurassic (~183 Ma ago) global warming and associated environmental changes coincided with an extinction event in the marine realm (early Toarcian extinction event). Anoxia was previously considered to have been the main cause of extinction, but extinctions also occur at localities that remained oxygenated throughout the event, suggesting that other factors, such as temperature, may have played a major role. To test this hypothesis, we integrated quantitative analyses of benthic macro-invertebrates with high-resolution geochemical proxies on the bulk rock (TOC, δ13C, δ18O) and on belemnites and brachiopod shells (δ13C, δ18O) from two sections from the Iberian Range, Spain, with no black shale deposition. The sections are orientated SE-NW along an onshore-offshore gradient deepening to the north. The dominant benthic groups, bivalves and brachiopods, show a different response to the extinction: brachiopods go through a complete species-level turnover, while many bivalve species range through the event. In the shallower section, changes in richness and evenness correlate with TOC (Total Organic Carbon), suggesting that variations in nutrient input from runoff, and the possible local onset of low-redox conditions (TOC > 4 wt%), controlled faunal diversity. In contrast, at the deeper section, community change correlates with changes in δ18O, indicating that temperature variations might have influenced faunal change. Different stratigraphic patterns of extinction occur between the two localities, with last-occurrences clustering at the maximum flooding surface in the shallower section, and at the transgressive surface in the deeper one. The observed differences between the two localities highlight the important role of local sedimentary and stratigraphic processes in controlling the shape of the geochemical and fossil record, and the need for studying multiple sections along onshore-offshore gradients in order to extrapolate regional and global patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.