Abstract
Although stratifying autism spectrum disorder (ASD) into different subtypes is a common effort in the research field, few papers have characterized the functional connectivity alterations of ASD subgroups classified by their clinical presentations. This is a case-control rs-fMRI study, based on large samples of open database (Autism Brain Imaging Data Exchange, ABIDE). The rs-MRI data from n=415 ASD patients (males n=357), and n=574 typical development (TD) controls (males n=410) were included. Clinical features of ASD were extracted and classified using data from each patient's Autism Diagnostic Interview-Revised (ADI-R) evaluation. Each subtype of ASD was characterized by local functional connectivity using regional homogeneity (ReHo) for assessment, remote functional connectivity using voxel-mirrored homotopic connectivity (VMHC) for assessment, the whole-brain functional connectivity, and graph theoretical features. These identified imaging properties from each subtype were integrated to create a machine learning model for classifying ASD patients into the subtypes based on their rs-fMRI data, and an independent dataset was used to validate the model. All ASD participants were classified into Cluster-1 (patients with more severe impairment) and Cluster-2 (patients with moderate impairment) according to the dimensional scores of ADI-R. When compared to the TD group, Cluster-1 demonstrated increased local connection and decreased remote connectivity, and widespread hyper- and hypo-connectivity variations in the whole-brain functional connectivity. Cluster-2 was quite similar to the TD group in both local and remote connectivity. But at the level of whole-brain functional connectivity, the MCC-related connections were specifically impaired in Cluster-2. These properties of functional connectivity were fused to build a machine learning model, which achieved ~75% for identifying ASD subtypes (Cluster-1 accuracy = 81.75%; Cluster-2 accuracy = 76.48%). The stratification of ASD by clinical presentations can help to minimize disease heterogeneity and highlight the distinguished properties of brain connectivity in ASD subtypes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have