Abstract

When ocean's internal tidal waves “beach” at underwater topography, they transform from more or less linear into highly nonlinear waves that can break with generation of vigorous turbulent mixing. Although most mixing occurs in the half hour around a steep (bottom-)front leading the upslope moving internal tide phase, relatively large mixing also occurs some distance of several tens of meters off the bottom, just prior to the downslope moving internal tide phase and initiated by high-frequency “small-scale” internal waves. Details of this off-bottom small-scale mixing in a stratified natural environment and some of its variability per tidal period are presented here in two case studies using high-resolution temperature observations (61 sensors at 1 m intervals; <10−3 °C precision) at a 969 m deep site south of New Zealand. The observations shed some light on stratified turbulence that is generated in a relatively thick (∼30 m) weakly stratified layer and in the strongly stratified interfaces above and below. The interfacial internal waves generate turbulence with largest dissipation rate and temperature variance at the edge of the upper interface and the weakly stratified layer. When these waves steep nonlinearly, immediate moderate turbulence generation is observed below, throughout the weakly stratified layer. Largest turbulence is generated by 25 m high asymmetric Holmboe overturns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.