Abstract
In this paper, a new approach to fuzzy convergence theory in the framework of stratified L-topological spaces is provided. Firstly, the concept of stratified L-prefilter convergence structures is introduced and it is shown that the resulting category is a Cartesian closed topological category. Secondly, the relations between the category of stratified L-prefilter convergence spaces and the category of stratified L-topological spaces are studied and it is proved that the latter can be embedded in the former as a reflective subcategory. Finally, the relations between the category of stratified L-prefilter convergence spaces and the category of stratified L-Min convergence spaces (fuzzy convergence spaces in the sense of Min) are investigated and it is shown that the former can be embedded in the latter as a reflective subcategory.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have