Abstract

In the present study, (3,5-benzamide-2,4-dihydroxyphenyl)(phenyl) methanone (UV-CB) was synthesized and investigated as an ultraviolet (UV) absorber and a bacteriostatic agent. The optimized geometry, energy levels, charges, and UV electronic absorption bands of UV-CB in the singlet were calculated by density functional theory (DFT) calculations. The quantum chemical method was used to investigate the geometry and natural bond orbital (NBO) parameters. And the computational studies indicated that the intramolecular hydrogen bond (IMHB) was formed between the 2,4-dihydroxybenzophenone (UV-C) group and the N-(hydroxymethyl)benzamide (NBA) group, which was beneficial to the stability after the combination. The results of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests illustrated that UV-CB is a promising antibacterial agent. The successful synthesis of UV-CB with anti-UV performance and antibacterial ability evidences that DFT calculation is an available approach to design and analyze novel compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.