Abstract
Lithium-ion batteries (LIBs) are widely used as energy storage technology in emerging markets such as electric vehicles. The development of anode materials that can replace graphite materials is a hotspot of current research. Metal-organic frameworks (MOFs), as a kind of important porous inorganic organic hybrid crystals, have been developed and used as anode materials for LIBs. MOFs can be used as precursors for transition metal oxides (TMOs) with nanostructures based on unique properties such as their unique structure and morphological characteristic, and controllable skeleton composition. In this review, the application and recent progress of MOFs and their derived TMOs in anode materials for LIBs are reviewed. Attention is also paid to their electrochemical mechanisms and the mechanism of the cyclic capacity enhancement phenomenon. Finally, the challenges of MOFs and their derived TMOs as LIBs anode materials are discussed, and modification strategies to improve their electrochemical performance are analyzed and summarized.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have